Algebra II

5-4
Domain and Zeros
of Rational Functions

Find the domain and the zeros for the following functions
*) $f(x)=\frac{x-2}{x+5}$

Domain: \mathbb{R} except $\{-5\}$
Zeros: $\{2\}$ makes the bottom top zero
*3) $f(x)=x^{2}-x-12=(x-4)(x+3)$

Domain: \mathbb{R} (no bottom, no except)
Zeros: $\{4,-3\}$

Function- A rule or a map which assigns each value of the domain to exactly one value of the range.
Rational Function- a Function of the form $f(x)=\frac{p(x)}{q(x)}$
(a Function with x in the bottom)
Domain- the set of all possible inputs, usually x

What must always be a concern when working with Rational
Functions? Zero is not allowed in the denominator.
zeros- any x that has an output of 0 .
What has to be true about a fraction that is equal to zero? the numerator must equal zero
*2) $f(x)=\frac{1}{x^{2}-5 x-6}=\frac{1}{(x+1)(x-6)}$

Domain:
Rexcep $\{-1,6\}$
Zeros: \varnothing
there's no way for 1 to equal 0
*4) $f(x)=\frac{x^{2}-2 x-15}{x-5}=\frac{\langle x+3)(x-5)}{(x-5)}$
Domain: \mathbb{R} except $\{5\} \quad \begin{gathered}\text { even though they cancel! } \\ 5 \text { cant be in } \\ \text { domain }\end{gathered}$
Zeros: $\{-3\}$
*5) $\quad f(x)=\frac{1}{x^{2}+4}$
Domain: \mathbb{R}
$x^{2}+4$ will never equal zero $x^{2}+4 \geq 4$

Zeros: \varnothing

